

python-zyte-api

Command-line client and Python client library for Zyte API [https://docs.zyte.com/zyte-api/get-started.html].

Getting started

	Installation

	Basic usage

Usage

	API key

	Command-line client

	Python client library

Reference

	CLI reference

	API reference

All the rest

	Contributing

	Changes

Installation

pip install zyte-api

Note

Python 3.8+ is required.

Basic usage

Set your API key

After you sign up for a Zyte API account [https://app.zyte.com/account/signup/zyteapi], copy your API key [https://app.zyte.com/o/zyte-api/api-access].

Use the command-line client

Then you can use the zyte-api command-line client to send Zyte API requests.
First create a text file with a list of URLs:

https://books.toscrape.com
https://quotes.toscrape.com

And then call zyte-api from your shell:

zyte-api url-list.txt --api-key YOUR_API_KEY --output results.jsonl

Use the Python sync API

For very basic Python scripts, use the sync API:

from zyte_api import ZyteAPI

client = ZyteAPI(api_key="YOUR_API_KEY")
response = client.get({"url": "https://toscrape.com", "httpResponseBody": True})

Use the Python async API

For asyncio code, use the async API:

import asyncio

from zyte_api import AsyncZyteAPI

async def main():
 client = AsyncZyteAPI(api_key="YOUR_API_KEY")
 response = await client.get(
 {"url": "https://toscrape.com", "httpResponseBody": True}
)

asyncio.run(main())

API key

After you sign up for a Zyte API account [https://app.zyte.com/account/signup/zyteapi], copy your API key [https://app.zyte.com/o/zyte-api/api-access].

It is recommended to configure your API key through an environment variable, so
that it can be picked by both the command-line client and
the Python client library:

	On Windows:

> set ZYTE_API_KEY=YOUR_API_KEY

	On macOS and Linux:

$ export ZYTE_API_KEY=YOUR_API_KEY

Alternatively, you may pass your API key to the clients directly:

	To pass your API key directly to the command-line client, use the
--api-key switch:

zyte-api --api-key YOUR_API_KEY …

	To pass your API key directly to the Python client classes, use the
api_key parameter when creating a client object:

from zyte_api import ZyteAPI

client = ZyteAPI(api_key="YOUR_API_KEY")

from zyte_api import AsyncZyteAPI

client = AsyncZyteAPI(api_key="YOUR_API_KEY")

Command-line client

Once you have installed python-zyte-api and configured
your API key, you can use the zyte-api command-line client.

To use zyte-api, pass an input file as the first
parameter and specify an output file with --output.
For example:

zyte-api urls.txt --output result.jsonl

Input file

The input file can be either of the following:

	A plain-text file with a list of target URLs, one per line. For example:

https://books.toscrape.com
https://quotes.toscrape.com

For each URL, a Zyte API request will be sent with
browserHtml [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/browserHtml] set to True.

	A JSON Lines [https://jsonlines.org/] file with a object of Zyte
API request parameters [https://docs.zyte.com/zyte-api/usage/reference.html#zyte-api-reference] per line. For example:

{"url": "https://a.example", "browserHtml": true, "geolocation": "GB"}
{"url": "https://b.example", "httpResponseBody": true}
{"url": "https://books.toscrape.com", "productNavigation": true}

Output file

You can specify the path to an output file with the --output/-o switch.
If not specified, the output is printed on the standard output.

Warning

The output path is overwritten.

The output file is in JSON Lines [https://jsonlines.org/] format. Each line contains a JSON object
with a response from Zyte API.

By default, zyte-api uses multiple concurrent connections for
performance reasons and, as a result, the order of
responses will probably not match the order of the source requests from the
input file. If you need to match the output results to the
input requests, the best way is to use echoData [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/echoData]. By default,
zyte-api fills echoData [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/echoData] with the input URL.

Optimization

By default, zyte-api uses 20 concurrent connections for requests. Use the
--n-conn switch to change that:

zyte-api --n-conn 40 …

The --shuffle option can be useful if you target multiple websites and your
input file is sorted by website, to randomize the request
order and hence distribute the load somewhat evenly:

zyte-api urls.txt --shuffle …

For guidelines on how to choose the optimal --n-conn value for you, and
other optimization tips, see Optimizing Zyte API usage [https://docs.zyte.com/zyte-api/usage/optimize.html#zyte-api-optimize].

Errors and retries

zyte-api automatically handles retries for rate-limiting [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-rate-limit] and unsuccessful [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-unsuccessful-responses] responses, as well as network errors,
following the default retry policy.

Use --dont-retry-errors to disable the retrying of error responses, and
retrying only rate-limiting responses [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-rate-limit]:

zyte-api --dont-retry-errors …

By default, errors are only logged in the standard error output (stderr).
If you want to include error responses in the output file, use
--store-errors:

zyte-api --store-errors …

See also

CLI reference

Python client library

Once you have installed python-zyte-api and configured
your API key, you can use one of its APIs from Python code:

	The sync API can be used to build simple, proof-of-concept or
debugging Python scripts.

	The async API can be used from coroutines [https://docs.python.org/3/library/asyncio-task.html#coroutine], and is meant for production usage, as well as for asyncio
environments like Jupyter notebooks [https://jupyter.org/].

Sync API

Create a ZyteAPI object, and use its
get() method to perform a single request:

from zyte_api import ZyteAPI

client = ZyteAPI()
result = client.get({"url": "https://toscrape.com", "httpResponseBody": True})

To perform multiple requests, use a session() for
better performance, and use iter() to send multiple
requests in parallel:

from zyte_api import ZyteAPI, RequestError

client = ZyteAPI()
with client.session() as session:
 queries = [
 {"url": "https://toscrape.com", "httpResponseBody": True},
 {"url": "https://books.toscrape.com", "httpResponseBody": True},
]
 for result_or_exception in session.iter(queries):
 if isinstance(result_or_exception, dict):
 ...
 elif isinstance(result_or_exception, RequestError):
 ...
 else:
 assert isinstance(result_or_exception, Exception)
 ...

Tip

iter() yields results as they come, not
necessarily in their original order. Use echoData [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/echoData] to track
the source request.

Async API

Create an AsyncZyteAPI object, and use its
get() method to perform a single request:

import asyncio

from zyte_api import AsyncZyteAPI

async def main():
 client = AsyncZyteAPI()
 result = await client.get({"url": "https://toscrape.com", "httpResponseBody": True})

asyncio.run(main())

To perform multiple requests, use a session() for
better performance, and use iter() to send
multiple requests in parallel:

import asyncio

from zyte_api import ZyteAPI, RequestError

async def main():
 client = ZyteAPI()
 async with client.session() as session:
 queries = [
 {"url": "https://toscrape.com", "httpResponseBody": True},
 {"url": "https://books.toscrape.com", "httpResponseBody": True},
]
 for future in session.iter(queries):
 try:
 result = await future
 except RequestError as e:
 ...
 except Exception as e:
 ...

asyncio.run(main())

Tip

iter() yields results as they come, not
necessarily in their original order. Use echoData [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/echoData] to track
the source request.

Optimization

ZyteAPI and AsyncZyteAPI use 15
concurrent connections by default.

To change that, use the n_conn parameter when creating your client object:

client = ZyteAPI(n_conn=30)

The number of concurrent connections if enforced across all method calls,
including different sessions of the same client.

For guidelines on how to choose the optimal value for you, and other
optimization tips, see Optimizing Zyte API usage [https://docs.zyte.com/zyte-api/usage/optimize.html#zyte-api-optimize].

Errors and retries

Methods of ZyteAPI and AsyncZyteAPI automatically handle
retries for rate-limiting [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-rate-limit] and unsuccessful [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-unsuccessful-responses] responses, as well as network errors.

The default retry policy, zyte_api_retrying, does the
following:

	Retries rate-limiting responses [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-rate-limit] forever.

	Retries unsuccessful responses [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-unsuccessful-responses] up
to 3 times.

	Retries network errors for up to 15 minutes.

All retries are done with an exponential backoff algorithm.

To customize the retry policy, create your own AsyncRetrying [https://tenacity.readthedocs.io/en/latest/api.html#tenacity.AsyncRetrying]
object, e.g. using a custom subclass of RetryFactory, and
pass it when creating your client object:

client = ZyteAPI(retrying=custom_retry_policy)

When retries are exceeded for a given request, an exception is raised. Except
for the iter() method of the sync API, which
yields exceptions instead of raising them, to prevent exceptions from
interrupting the entire iteration.

The type of exception depends on the issue that caused the final request
attempt to fail. Unsuccessful responses trigger a RequestError and
network errors trigger aiohttp exceptions [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp-client-reference].
Other exceptions could be raised; for example, from a custom retry policy.

See also

API reference

CLI reference

zyte-api

Send Zyte API requests.

usage: zyte-api [-h] [--intype {txt,jl}] [--limit LIMIT] [--output OUTPUT]
 [--n-conn N_CONN] [--api-key API_KEY] [--api-url API_URL]
 [--loglevel {DEBUG,INFO,WARNING,ERROR}] [--shuffle]
 [--dont-retry-errors] [--store-errors]
 INPUT

Positional Arguments

	INPUT

	Path to an input file (see ‘Command-line client > Input file’ in the docs for details).

Named Arguments

	--intype

	Possible choices: txt, jl

Type of the input file, either ‘txt’ (plain text) or ‘jl’ (JSON Lines).

If not specified, the input type is guessed based on the input file extension (‘.jl’, ‘.jsonl’, or ‘.txt’), or in its content, with ‘txt’ as fallback.

	--limit

	Maximum number of requests to send.

	--output, -o

	Path for the output file. Results are written into the output file in JSON Lines format.

If not specified, results are printed to the standard output.

	--n-conn

	Number of concurrent connections to use (default: 20).

	--api-key

	Zyte API key.

	--api-url

	Zyte API endpoint (default: “https://api.zyte.com/v1/”).

	--loglevel, -L

	Possible choices: DEBUG, INFO, WARNING, ERROR

Log level (default: “INFO”).

	--shuffle

	Shuffle request order.

	--dont-retry-errors

	Do not retry unsuccessful responses and network errors, only rate-limiting responses.

	--store-errors

	Store error responses in the output file.

If omitted, only successful responses are stored.

API reference

Sync API

	
class ZyteAPI(*, api_key=None, api_url='https://api.zyte.com/v1/', n_conn=15, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None, user_agent: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Synchronous Zyte API client.

api_key is your Zyte API key. If not specified, it is read from the
ZYTE_API_KEY environment variable. See API key.

api_url is the Zyte API base URL.

n_conn is the maximum number of concurrent requests to use. See
Optimization.

retrying is the retry policy for requests. Defaults to
zyte_api_retrying.

user_agent is the user agent string reported to Zyte API. Defaults to
python-zyte-api/<VERSION>.

Tip

To change the User-Agent header sent to a target website, use
customHttpRequestHeaders [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/customHttpRequestHeaders] instead.

	
get(query: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, endpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = 'extract', session: ClientSession | None [https://docs.python.org/3/library/constants.html#None] = None, handle_retries: bool [https://docs.python.org/3/library/functions.html#bool] = True, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Send query to Zyte API and return the result.

endpoint is the Zyte API endpoint path relative to the client object
api_url.

session is the network session to use. Consider using
session() instead of this parameter.

handle_retries determines whether or not a retry policy should be used.

retrying is the retry policy to use, provided
handle_retries is True. If not specified, the default retry
policy is used.

	
iter(queries: List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], *, endpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = 'extract', session: ClientSession | None [https://docs.python.org/3/library/constants.html#None] = None, handle_retries: bool [https://docs.python.org/3/library/functions.html#bool] = True, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][dict [https://docs.python.org/3/library/stdtypes.html#dict] | Exception [https://docs.python.org/3/library/exceptions.html#Exception], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Send multiple queries to Zyte API in parallel and iterate over
their results as they come.

The number of queries can exceed the n_conn parameter set on the
client object. Extra queries will be queued, there will be only up to
n_conn requests being processed in parallel at a time.

Results may come an a different order from the original list of
queries. You can use echoData [https://docs.zyte.com/zyte-api/usage/reference.html#operation/extract/request/echoData] to attach metadata to
queries, and later use that metadata to restore their original order.

When exceptions occur, they are yielded, not raised.

The remaining parameters work the same as in get().

	
session(**kwargs)

	Context manager [https://docs.python.org/3/reference/datamodel.html#context-managers] to create a session.

A session is an object that has the same API as the client object,
except:

	get() and iter() do not have a session parameter,
the session creates an aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] object and
passes it to get() and iter() automatically.

	It does not have a session() method.

Using the same aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] object for all Zyte API
requests improves performance by keeping a pool of reusable connections
to Zyte API.

The aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] object is created with sane defaults
for Zyte API, but you can use kwargs to pass additional parameters to
aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] and even override those sane defaults.

You do not need to use session() as a context manager as long as
you call close() on the object it returns when you are done:

session = client.session()
try:
 ...
finally:
 session.close()

Async API

	
class AsyncZyteAPI(*, api_key=None, api_url='https://api.zyte.com/v1/', n_conn=15, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None, user_agent: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Asynchronous Zyte API client.

Parameters work the same as for ZyteAPI.

	
async get(query: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, endpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = 'extract', session=None, handle_retries=True, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None) → Future

	Asynchronous equivalent to ZyteAPI.get().

	
iter(queries: List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], *, endpoint: str [https://docs.python.org/3/library/stdtypes.html#str] = 'extract', session: ClientSession | None [https://docs.python.org/3/library/constants.html#None] = None, handle_retries=True, retrying: AsyncRetrying | None [https://docs.python.org/3/library/constants.html#None] = None) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Future]

	Asynchronous equivalent to ZyteAPI.iter().

Note

Yielded futures, when awaited, do raise their exceptions,
instead of only returning them.

	
session(**kwargs)

	Asynchronous equivalent to ZyteAPI.session().

You do not need to use session() as an async
context manager as long as you await close() on the object it
returns when you are done:

session = client.session()
try:
 ...
finally:
 await session.close()

Retries

	
zyte_api_retrying

	Default retry policy.

	
class RetryFactory

	Factory class that builds the tenacity.AsyncRetrying [https://tenacity.readthedocs.io/en/latest/api.html#tenacity.AsyncRetrying] object
that defines the default retry policy.

To create a custom retry policy, you can subclass this factory class,
modify it as needed, and then call build() on your subclass to get
the corresponding tenacity.AsyncRetrying [https://tenacity.readthedocs.io/en/latest/api.html#tenacity.AsyncRetrying] object.

For example, to increase the maximum number of attempts for temporary
download errors [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-temporary-download-errors] from 4 (i.e. 3
retries) to 10 (i.e. 9 retries):

from tenacity import stop_after_attempt
from zyte_api import RetryFactory

class CustomRetryFactory(RetryFactory):
 temporary_download_error_stop = stop_after_attempt(10)

CUSTOM_RETRY_POLICY = CustomRetryFactory().build()

To retry permanent download errors [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-permanent-download-errors], treating them the same as
temporary download errors [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-temporary-download-errors]:

from tenacity import RetryCallState, retry_if_exception, stop_after_attempt
from zyte_api import RequestError, RetryFactory

def is_permanent_download_error(exc: BaseException) -> bool:
 return isinstance(exc, RequestError) and exc.status == 521

class CustomRetryFactory(RetryFactory):

 retry_condition = RetryFactory.retry_condition | retry_if_exception(
 is_permanent_download_error
)

 def wait(self, retry_state: RetryCallState) -> float:
 if is_permanent_download_error(retry_state.outcome.exception()):
 return self.temporary_download_error_wait(retry_state=retry_state)
 return super().wait(retry_state)

 def stop(self, retry_state: RetryCallState) -> bool:
 if is_permanent_download_error(retry_state.outcome.exception()):
 return self.temporary_download_error_stop(retry_state)
 return super().stop(retry_state)

CUSTOM_RETRY_POLICY = CustomRetryFactory().build()

Errors

	
exception RequestError(*args, **kwargs)

	Exception raised upon receiving a rate-limiting [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-rate-limit] or unsuccessful [https://docs.zyte.com/zyte-api/usage/errors.html#zyte-api-unsuccessful-responses] response from Zyte API.

	
property parsed

	Response as a ParsedError object.

	
query: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Query sent to Zyte API.

May be slightly different from the input query due to
pre-processing logic on the client side.

	
request_id: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Request ID.

	
response_content: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None]

	Response body.

	
class ParsedError(response_body: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], data: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None], parse_error: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None])

	Parsed error response body from Zyte API.

	
data: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	JSON-decoded response body.

If None, parse_error indicates the reason.

	
classmethod from_body(response_body: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → ParsedError

	Return a ParsedError object built out of the specified
error response body.

	
parse_error: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	If data is None, this indicates whether the reason is that
response_body is not valid JSON ("bad_json") or that it is
not a JSON object ("bad_format").

	
response_body: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Raw response body from Zyte API.

	
property type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	ID of the error type, e.g. "/limits/over-user-limit" or
"/download/temporary-error".

Contributing

python-zyte-api is an open-source project. Your contribution is very welcome!

Issue Tracker

If you have a bug report, a new feature proposal or simply would like to make
a question, please check our issue tracker on Github: https://github.com/zytedata/python-zyte-api/issues

Source code

Our source code is hosted on Github: https://github.com/zytedata/python-zyte-api

Before opening a pull request, it might be worth checking current and previous
issues. Some code changes might also require some discussion before being
accepted so it might be worth opening a new issue before implementing huge or
breaking changes.

Testing

We use tox [https://tox.readthedocs.io] to run tests with different Python versions:

tox

The command above also runs type checks; we use mypy.

Changes

0.5.2 (2024-05-10)

	RequestError now has a query
attribute with the Zyte API request parameters that caused the error.

0.5.1 (2024-04-16)

	ZyteAPI and AsyncZyteAPI sessions no
longer need to be used as context managers, and can instead be closed with a
close() method.

0.5.0 (2024-04-05)

	Removed Python 3.7 support.

	Added ZyteAPI and AsyncZyteAPI to
provide both sync and async Python interfaces with a cleaner API.

	Deprecated zyte_api.aio:

	Replace zyte_api.aio.client.AsyncClient with the new
AsyncZyteAPI class.

	Replace zyte_api.aio.client.create_session with the new
AsyncZyteAPI.session method.

	Import zyte_api.aio.errors.RequestError,
zyte_api.aio.retry.RetryFactory and
zyte_api.aio.retry.zyte_api_retrying directly from zyte_api now.

	When using the command-line interface, you can now use --store-errors to
have error responses be stored alongside successful responses.

	Improved the documentation.

0.4.8 (2023-11-02)

	Include the Zyte API request ID value in a new .request_id attribute
in zyte_api.aio.errors.RequestError.

0.4.7 (2023-09-26)

	AsyncClient now lets you set a custom user agent to send to Zyte API.

0.4.6 (2023-09-26)

	Increased the client timeout to match the server’s.

	Mentioned the api_key parameter of AsyncClient in the docs example.

0.4.5 (2023-01-03)

	w3lib >= 2.1.1 is required in install_requires, to ensure that URLs
are escaped properly.

	unnecessary requests library is removed from install_requires

	fixed tox 4 support

0.4.4 (2022-12-01)

	Fixed an issue with submitting URLs which contain unescaped symbols

	New “retrying” argument for AsyncClient.__init__, which allows to set
custom retrying policy for the client

	--dont-retry-errors argument in the CLI tool

0.4.3 (2022-11-10)

	Connections are no longer reused between requests.
This reduces the amount of ServerDisconnectedError exceptions.

0.4.2 (2022-10-28)

	Bump minimum aiohttp version to 3.8.0, as earlier versions don’t support
brotli decompression of responses

	Declared Python 3.11 support

0.4.1 (2022-10-16)

	Network errors, like server timeouts or disconnections, are now retried for
up to 15 minutes, instead of 5 minutes.

0.4.0 (2022-09-20)

	Require to install Brotli as a dependency. This changes the requests to
have Accept-Encoding: br and automatically decompress brotli responses.

0.3.0 (2022-07-29)

Internal AggStats class is cleaned up:

	AggStats.n_extracted_queries attribute is removed, as it was a duplicate
of AggStats.n_results

	AggStats.n_results is renamed to AggStats.n_success

	AggStats.n_input_queries is removed as redundant and misleading;
AggStats got a new AggStats.n_processed property instead.

This change is backwards incompatible if you used stats directly.

0.2.1 (2022-07-29)

	aiohttp.client_exceptions.ClientConnectorError is now treated as a
network error and retried accordingly.

	Removed the unused zyte_api.sync module.

0.2.0 (2022-07-14)

	Temporary download errors are now retried 3 times by default.
They were not retried in previous releases.

0.1.4 (2022-05-21)

This release contains usability improvements to the command-line script:

	Instead of python -m zyte_api you can now run it as zyte-api;

	the type of the input file (--intype argument) is guessed now,
based on file extension and content; .jl, .jsonl and .txt
files are supported.

0.1.3 (2022-02-03)

	Minor documenation fix

	Remove support for Python 3.6

	Added support for Python 3.10

0.1.2 (2021-11-10)

	Default timeouts changed

0.1.1 (2021-11-01)

	CHANGES.rst updated properly

0.1.0 (2021-11-01)

	Initial release.

 Python Module Index

 z

 		 	

 		
 z	

 	
 	
 zyte_api	

Index

 A
 | D
 | F
 | G
 | I
 | M
 | P
 | Q
 | R
 | S
 | T
 | Z

A

 	
 	AsyncZyteAPI (class in zyte_api)

D

 	
 	data (ParsedError attribute)

F

 	
 	from_body() (ParsedError class method)

G

 	
 	get() (AsyncZyteAPI method)

 	(ZyteAPI method)

I

 	
 	iter() (AsyncZyteAPI method)

 	(ZyteAPI method)

M

 	
 	
 module

 	zyte_api

P

 	
 	parse_error (ParsedError attribute)

 	
 	parsed (RequestError property)

 	ParsedError (class in zyte_api)

Q

 	
 	query (RequestError attribute)

R

 	
 	request_id (RequestError attribute)

 	RequestError

 	
 	response_body (ParsedError attribute)

 	response_content (RequestError attribute)

 	RetryFactory (class in zyte_api)

S

 	
 	session() (AsyncZyteAPI method)

 	(ZyteAPI method)

T

 	
 	type (ParsedError property)

Z

 	
 	
 zyte_api

 	module

 	
 	zyte_api_retrying (in module zyte_api)

 	ZyteAPI (class in zyte_api)

 nav.xhtml

 Table of Contents

 		
 python-zyte-api

 		
 Installation

 		
 Basic usage

 		
 Set your API key

 		
 Use the command-line client

 		
 Use the Python sync API

 		
 Use the Python async API

 		
 API key

 		
 Command-line client

 		
 Input file

 		
 Output file

 		
 Optimization

 		
 Errors and retries

 		
 Python client library

 		
 Sync API

 		
 Async API

 		
 Optimization

 		
 Errors and retries

 		
 CLI reference

 		
 zyte-api

 		
 Positional Arguments

 		
 Named Arguments

 		
 API reference

 		
 Sync API

 		
 ZyteAPI

 		
 Async API

 		
 AsyncZyteAPI

 		
 Retries

 		
 zyte_api_retrying

 		
 RetryFactory

 		
 Errors

 		
 RequestError

 		
 ParsedError

 		
 Contributing

 		
 Issue Tracker

 		
 Source code

 		
 Testing

 		
 Changes

 		
 0.5.2 (2024-05-10)

 		
 0.5.1 (2024-04-16)

 		
 0.5.0 (2024-04-05)

 		
 0.4.8 (2023-11-02)

 		
 0.4.7 (2023-09-26)

 		
 0.4.6 (2023-09-26)

 		
 0.4.5 (2023-01-03)

 		
 0.4.4 (2022-12-01)

 		
 0.4.3 (2022-11-10)

 		
 0.4.2 (2022-10-28)

 		
 0.4.1 (2022-10-16)

 		
 0.4.0 (2022-09-20)

 		
 0.3.0 (2022-07-29)

 		
 0.2.1 (2022-07-29)

 		
 0.2.0 (2022-07-14)

 		
 0.1.4 (2022-05-21)

 		
 0.1.3 (2022-02-03)

 		
 0.1.2 (2021-11-10)

 		
 0.1.1 (2021-11-01)

 		
 0.1.0 (2021-11-01)

_static/file.png

_static/minus.png

_static/plus.png

